Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
FLORÊNCIO, João Carlos Procópio |
Orientador(a): |
REN, Tsang Ing |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/17639
|
Resumo: |
Prever o sucesso de um filme e, por consequência, seu sucesso nas bilheterias tem uma grande importância na indústria cinematográfica, desde a fase de pré-produção do filme, quando os investidores querem saber quais serão os filmes mais promissores, até nas semanas seguintes ao seu lançamento, quando se deseja prever as bilheterias das semanas restantes de exibição. Por conta disso, essa área tem sido alvo de muitos estudos que tem usado diferentes abordagens de predição, seja na seleção das características dos filmes como nas técnicas de aprendizagem, para atingir uma maior capacidade de prever o sucesso dos filmes. Neste trabalho de mestrado, foi feita uma investigação sobre o comportamento das principais características dos filmes (gênero, classificação etária, orçamento de produção, etc), com maior foco nos resultados das bilheterias e sua relação com as características dos filmes, de forma a obter uma visão mais clara de como as caracaterísticas dos filmes podem influenciar no seu sucesso, seja ele interpretado como lucro ou volume de bilheterias. Em seguida, em posse de uma base de filmes extraída do Box-Office Mojo e do IMDb, foi proposto um novo modelo de predição de box office utilizando os dados disponíveis dessa base, que é composta de: meta-dados dos filmes, palavras-chaves, e dados de bilheterias. Algumas dessas características são hibridizadas com o objetivo evidenciar as combinações de características mais importantes. É aplicado também um processo de seleção de características para excluir aquelas que não são relevantes ao modelo. O modelo utiliza Random Forest como máquina de aprendizagem. Os resultados obtidos com a técnica proposta sugerem, além de uma maior simplificação do modelo em relação a estudos anteriores, que o método consegue obter taxas de acerto superior 90% quando a classificação é medida com a métrica 1-away (quando a amostra é classificada com até 1 classe de distância), e consegue melhorar a qualidade da predição em relação a estudos anteriores quando testado com os dados da base disponível. |