[en] A SYSTEM TO FORECAST WEEKLY LOAD ELECTRICITY DATA

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: LAURA VALERIA LOPES DE ALMEIDA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7463&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=7463&idi=2
http://doi.org/10.17771/PUCRio.acad.7463
Resumo: [pt] A presente dissertação tem por objetivo o estudo quantitativo da previsão da demanda de carga elétrica semanal para a região sudeste e em particular, para os Estados do Rio de Janeiro e São Paulo. Foram estudadas para tanto as séries reais dos últimos 7(sete) anos, ou seja, de janeiro de 1991 a novembro de 1997 das concessionárias LIGHT, CERJ, CESP, CPFL e ELETROPAULO. Para o estudo de previsão foi utilizado o conceito in sample, ou seja, parte real dos dados foram separados e mais tarde comparados com os valores previstos experimentalmente para aquela mesma época dos dados reais separados. Desta forma, permitiu-se averiguar qual seria a precisão da previsão, verificando-se os erros entre os valores experimentais e reais. Para os cálculos das previsões, também foi utilizado o conceito de bayesiano de combinação de previsões (outperformance) das duas técnicas a saber: redes neurais artificiais (software Neunet) e o modelo clássico Box & Jenkins (software Autobox). Para se obter o valor combinado das previsões, foi utilizado software matlab que se comportou de maneira adequada para o estudo em questão. Além disso vale acrescentar que o software Neunet foi utilizado, pois possui em seu ambiente a técnica de eliminação de sinapses enquadra-se dentro do conceito de redes neurais multicamadas com retropropagação dos erros.