Auto-similaridade e unicidade para um sistema semilinear, e existência de solução com dado singular para a equação da onda semilinear

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: Mateus de Souza, Eder
Orientador(a): Catão de Freitas Ferreira, Lucas
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/7009
Resumo: Obtivemos a boa-colocação global de soluções pequenas em espaços de Marcinkiewicz L(p1;¥) £L(p2;¥) para um sistema semilinear. Soluções brandas são obtidas em espaços com índices certos para permitir a existência de solução auto-similar. Usando nossas estimativas dos termos de acoplamento não lineares, provamos a unicidade de soluções na classe C([0;¥);Lp1(Rn)£Lp2(Rn)); sem qualquer hipótese de pequenez. Provamos algumas estimativas de decaimento e analisamos o comportamento assintótico das soluções. Estudamos também o problema de Cauchy para a equação da onda semilinear, com dados singulares em espaços de Marcinkiewicz, provando um resultado de boa-colocação local e decaimento próximo de t = 0