Existência de solução e estabilidade na fronteira da equação da onda semilinear.
Ano de defesa: | 2012 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Ciências e Tecnologia - CCT PÓS-GRADUAÇÃO EM MATEMÁTICA UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2483 |
Resumo: | Neste trabalho estudaremos a existência e comportamento assintótico da solução fraca para o problema u00 (t) u + h(u) = f em Q u = 0 sobre 0; @u @ + u0 = 0 sobre 1; u(0) = u0; u0(0) = u1 em (1) onde Q = T é um domínio cilíndrico, T > 0 um número real, sujeita a certas condições de fronteira = 0 [ 1, 0 \ 1 = ; com med(0); med(1) > 0 e h uma função contínua satisfazendo a condição de Strauss sh(s) 0, 8s 2 R. A existência de solução forte será feita utilizando o método de Faedo-Galerkin com uma base especial para V \ H2() como feito em [16] e resultado de compacidade cf em Lions [11]. A existência de solução fraca utiliza o Teorema de Strauss cf Strauss [24] e resultados bem gerais de traço devido a M.Milla Miranda e L.A.Medeiros [20]. O comportamente assintótico é feito usando o funcional de Liapunov, juntamente com técnicas multiplicativas como feito em Kormonik-Zuazua [9]. |