Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
GOUVEIA, Hugo Tavares Vieira |
Orientador(a): |
AQUINO, Ronaldo Ribeiro Barbosa de |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Engenharia Eletrica
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Link de acesso: |
https://repositorio.ufpe.br/handle/123456789/32605
|
Resumo: |
Com o aumento da participação de fontes de geração intermitente nas matrizes eletro-energéticas de países como o Brasil, torna-se essencial para os estudos de planejamento e programação da operação do sistema o conhecimento prévio da geração futura dessas fontes. A distribuição de probabilidades da geração de energia eólica em bases mensal e anual é bem conhecida, o que facilita o planejamento energético com a inclusão desta fonte. Por outro lado, em horizontes que variam de poucas horas a alguns dias à frente, a constante intermitência da fonte eólica exige previsões de geração confiáveis para a determinação do ponto ótimo de operação do sistema elétrico. Nesta tese foi desenvolvido um método no qual se aplica um algoritmo evolucionário para a definição dos hiperparâmetros e topologia de redes neurais recorrentes do tipo Echo State Networks que realizam previsões de vento e geração eólica, em base horária, no horizonte de 24 horas. Assim como no método que deu origem ao proposto na presente tese, o algoritmo evolucionário permite a busca simultânea pelos melhores hiperparâmetros e topologia da rede, sem a necessidade de redução dos autovalores da matriz de pesos do reservoir (camada interna da Echo State Network), e em tempo consideravelmente inferior àquele necessário caso fosse realizada uma busca exaustiva pelos melhores parâmetros da rede, o que exige grande esforço computacional e elevado tempo de processamento. Dentre as principais contribuições da tese destaca-se a possibilidade de utilização de estados aumentados no reservoir, os quais podem ser os sinais de aproximação e detalhe da análise de multiresolução via Wavelets, ou então do tipo quadráticos. Os estados aumentados possibilitam a redução da quantidade de neurônios no reservoir sem perda de desempenho e com redução do esforço computacional e, consequentemente, do tempo de processamento. O método foi aplicado para a realização da previsão horária da velocidade do vento em quinze localidades distintas e também para a previsão da geração de cinco plantas comerciais, todas localizadas na Região Nordeste. Os resultados demonstraram que os erros das previsões obtidas com o método proposto são equivalentes aos erros obtidos com os melhores modelos do estado da arte na previsão de velocidade de vento e geração eólica. |