Avaliação de modelos de inteligência artificial para previsão da velocidade de vento em curto prazo
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
UNIVERSIDADE FEDERAL DE PERNAMBUCO
UFPE Brasil Programa de Pos Graduacao em Engenharia Eletrica |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/14993 |
Resumo: | O Brasil apresenta um amplo potencial eólico a ser explorado, atualmente, observa-se a grande expansão desta fonte de geração, principalmente no nordeste do Brasil, onde os ventos apresentam uma importante característica de complementaridade em relação às vazões do rio São Francisco. Porém, devido à incerteza associada à potência disponível, o aprimoramento das ferramentas de previsão de curto prazo representa um fator determinante para a operação do sistema, contribuindo para facilitar a comercialização de energia elétrica, o controle dos parques eólicos e fornecer uma estimativa futura para determinada localidade. Este trabalho é uma contribuição aos modelos de previsão de velocidades médias horárias dos ventos, para o horizonte de previsão de uma a quatro horas, utilizando as Redes Neurais Artificiais, sistemas Neuro-Fuzzy e o Reservoir Computing como métodos de inteligência artificial e as variáveis velocidade média do vento, umidade do ar, radiação solar e temperatura como entradas dos modelos de previsão. Os resultados obtidos para as previsões com alguns modelos propostos, revelaram ganhos da ordem de 50 % quando comparados com o modelo de referência, ratificando a eficiência dos modelos desenvolvidos. |