Studying riemannian immersions into semi-riemannian spaces via parabolicity, Liouville type results and other maximum principles

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Silva, Railane Antonia da lattes
Orientador(a): Santos, Marcio Silva lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal da Paraíba
Programa de Pós-Graduação: Programa de Pós-Graduação em Matemática
Departamento: Matemática
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufpb.br/jspui/handle/123456789/30473
Resumo: Esta tese estuda a geometria de subvariedades Riemannianas completas imersas em certos espaços semi-Riemannianos via critérios de parabolicidade relacionados ao operador de Cheng-Yau modificado e a um operador diferencial linearizado que pode ser considerado como uma extensão natural do Laplaciano padrão, via generalização de um resultado tipo-Liouville e versões do princípio máximo. Neste sentido, através de critérios de parabolicidade e de fórmulas apropriadas do tipo Simons relativas a subvariedades imersas com vetor de curvatura média normalizado paralelo em variedades Einstein, provamos novos resultados de caracterização. No caso de subvariedades de produtos warped semi-Riemannianos, sob condições de convergência e restrições apropriadas nas curvaturas médias de ordem superior, também obtemos resultados de unicidade e inexistência via critérios de parabolicidade e de p-integrabilidade, para p ≥ 1, generalização de um resultado do tipo-Liouville, uma versão do princípio máximo no infinito para campos vetoriais e um princípio máximo relacionado ao crescimento de volume polinomial. Também são apresentadas aplicações aos casos em que o espaço ambiente é uma variedade de Einstein, os modelos de Steady-Statede espaços Schwarzschild e Reeissner-Nordström, e uma investigação particular de gráficos inteiros construídos sobre a fibra do espaço ambiente.