Abordagem bayesiana para modelos de regressão logística com erros e classificações repetidas
Ano de defesa: | 2010 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/ICED-86XQ7H |
Resumo: | Sob o enfoque bayesiano, apresentamos uma abordagem que incorpora classificações repetidas e independentes ao modelo de regressão logística em que a variável resposta está sujeita a erros de classificação. O primeiro modelo proposto (MTS) considera onúmero total de sucessos obtidos nas classificações, enquanto o segundo modelo (MCF) considera a classificação final do elemento após essas classificações. Os modelos propostos utilizam distribuições a priori de médias condicionadas e o método ARMS em Gibbs Sampler para realizar o processo de inferência. Estudos de simulação demonstraram que MCF apresenta melhor desempenho quando comparado ao MTS e ao modelo em que é realizada apenas uma classificação do elemento amostral. |