A necessidade de classificações repetidas no modelo de regressão logística com erros na variável resposta
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
Brasil ICX - DEPARTAMENTO DE ESTATÍSTICA Programa de Pós-Graduação em Estatística UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/31235 |
Resumo: | Maximum likelihood estimators for the logistic regression model with misclassification in the response variable are extremely biased when error probabilities are ignored. If misclassification parameters are incorporated in the likelihood function, the bias of the estimators will be satisfactorily reduced, however, there would be a considerable increase in variability, which would reduce the quality of the decision-making process. To minimize the problem, there is a need to introduce additional information. It will be demonstrated that the realization of repeated measures in the response variable, or in part of it, can reduce bias and variability of the estimators, simultaneously. |