A necessidade de classificações repetidas no modelo de regressão logística com erros na variável resposta

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Danilo Gilberto de Oliveira Valadares
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Brasil
ICX - DEPARTAMENTO DE ESTATÍSTICA
Programa de Pós-Graduação em Estatística
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/31235
Resumo: Maximum likelihood estimators for the logistic regression model with misclassification in the response variable are extremely biased when error probabilities are ignored. If misclassification parameters are incorporated in the likelihood function, the bias of the estimators will be satisfactorily reduced, however, there would be a considerable increase in variability, which would reduce the quality of the decision-making process. To minimize the problem, there is a need to introduce additional information. It will be demonstrated that the realization of repeated measures in the response variable, or in part of it, can reduce bias and variability of the estimators, simultaneously.