Inferência em um modelo de regressão com resposta binária na presença de sobredispersão e erros de medição

Detalhes bibliográficos
Ano de defesa: 2007
Autor(a) principal: Tieppo, Sandra Maria
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-26042007-172251/
Resumo: Modelos de regressão com resposta binária são utilizados na solução de problemas nas mais diversas áreas. Neste trabalho enfocamos dois problemas comuns em certos conjuntos de dados e que requerem técnicas apropriadas que forneçam inferências satisfatórias. Primeiro, em certas aplicações uma mesma unidade amostral é utilizada mais de uma vez, acarretando respostas positivamente correlacionadas, responsáveis por uma variância na variável resposta superior ao que comporta a distribuição binomial, fenômeno conhecido como sobredispersão. Por outro lado, também encontramos situações em que a variável explicativa contém erros de medição. É sabido que utilizar técnicas que desconsideram esses erros conduz a resultados inadequados (estimadores viesados e inconsistentes, por exemplo). Considerando um modelo com resposta binária, utilizaremos a distribuição beta-binomial para representar a sobredispersão. Os métodos de máxima verossimilhança, SIMEX, calibração da regressão e máxima pseudo-verossimilhança foram usados na estimação dos parâmetros do modelo, que são comparados através de um estudo de simulação. O estudo de simulação sugere que os métodos de máxima verossimilhança e calibração da regressão são melhores no sentido de correção do viés, especialmente para amostras de tamanho 50 e 100. Também estudaremos testes de hipóteses assintóticos (como razão de verossimilhanças, Wald e escore) a fim de testar hipóteses de interesse. Apresentaremos também um exemplo com dados reais