Um estudo da geometria hiperbólica complexa

Detalhes bibliográficos
Ano de defesa: 2009
Autor(a) principal: Aldo Peres Campos e Lopes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
UFMG
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://hdl.handle.net/1843/EABA-7VXSAF
Resumo: Estudamos o espaço hiperbólico complexo de dimensão 2, H2C, e seus modelos: o modelo projetivo, o modelo da bola, o domínio de Siegel e as coordenadas horoesféricas. Apresentamos as subvariedades totalmente geodésicas de H2 C e interpretamos geometricamente a fronteira dessas subvariedades em @H2C, ou seja, as cadeias e os R-círculos. Estudamos também a classificação dos elementos de PU(2,1), grupo de isometrias holomorfas e H2 C, e finalizamos a dissertação apresentando alguns resultados a respeito da interseção de bissetores.