Um estudo da geometria hiperbólica complexa
Ano de defesa: | 2009 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Minas Gerais
UFMG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://hdl.handle.net/1843/EABA-7VXSAF |
Resumo: | Estudamos o espaço hiperbólico complexo de dimensão 2, H2C, e seus modelos: o modelo projetivo, o modelo da bola, o domínio de Siegel e as coordenadas horoesféricas. Apresentamos as subvariedades totalmente geodésicas de H2 C e interpretamos geometricamente a fronteira dessas subvariedades em @H2C, ou seja, as cadeias e os R-círculos. Estudamos também a classificação dos elementos de PU(2,1), grupo de isometrias holomorfas e H2 C, e finalizamos a dissertação apresentando alguns resultados a respeito da interseção de bissetores. |