Existência de soluções para duas classes de problemas elípticos usando a aplicação fibração relacionada à variedade de Nehari

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Lima, Sandra Machado de Souza lattes
Orientador(a): Miyagaki, Olímpio Hiroshi lattes
Banca de defesa: Santos, Carlos Alberto Pereira dos lattes, Pereira, Fábio Rodrigues lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Juiz de Fora (UFJF)
Programa de Pós-Graduação: Mestrado Acadêmico em Matemática
Departamento: ICE – Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufjf.br/jspui/handle/ufjf/4700
Resumo: A variedade de Nehari para a equação −∆u(x) = λa(x)u(x)q + b(x)u(x)p, com x ∈ Ω, junto com a condição de fronteira de Dirichlet é investigada no caso em que a(x) = 1, λ ∈R, q = 1 e 0 < p < 1, e também no caso em que λ > 0 e 0 < q < 1 < p < 2∗−1. Explorando a relação entre a variedade de Nehari e a aplicação fibração ( isto é, aplicações da forma t → J(tu) onde J é o funcional de Euler associado ao problema em questão), iremos discutir a existência e multiplicidade de soluções não negativas.