Volumes e curvaturas médias na geometria de Finsler:superfícies mínimas

Detalhes bibliográficos
Ano de defesa: 2012
Autor(a) principal: Chavéz, Newton Mayer Solorzano lattes
Orientador(a): Souza, Marcelo Almeida de lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Goiás
Programa de Pós-Graduação: Programa de Pós-graduação em Matemática (IME)
Departamento: Instituto de Matemática e Estatística - IME (RG)
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://repositorio.bc.ufg.br/tede/handle/tde/2885
Resumo: In Finsler geometry, we have several volume forms, hence various of mean curvature forms. The two best known volumes forms are the Busemann-Hausdorff and Holmes- Thompson volume form. The minimal surface with respect to these volume forms are called BH-minimal and HT-minimal surface, respectively. Let (R3; eFb) be a Minkowski space of Randers type with eFb = ea+eb; where ea is the Euclidean metric and eb = bdx3; 0 < b < 1: If a connected surface M in (R3; eFb) is minimal with respect to both volume forms Busemann-Hausdorff and Holmes-Thompson, then up to a parallel translation of R3; M is either a piece of plane or a piece of helicoid which is generated by lines screwing along the x3-axis. Furthermore it gives an explicit rotation hypersurfaces BH-minimal and HT-minimal generated by a plane curve around the axis in the direction of eb] in Minkowski (a;b)-space (Vn+1; eFb); where Vn+1 is an (n+1)-dimensional real vector space, eFb = eaf eb ea ; ea is the Euclidean metric, eb is a one form of constant length b = kebkea; eb] is the dual vector of eb with respect to ea: As an application, it give us an explicit expression of surface of rotation “ forward” BH-minimal generated by the rotation around the axis in the direction of eb] in Minkowski space of Randers type (V3; ea+eb):