Arcabouço para análise de eventos em vídeos.
Ano de defesa: | 2015 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Campina Grande
Brasil Centro de Engenharia Elétrica e Informática - CEEI PÓS-GRADUAÇÃO EM CIÊNCIA DA COMPUTAÇÃO UFCG |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/592 |
Resumo: | O reconhecimento automático de eventos de interesse em vídeos envolvendo conjuntos de ações ou de interações entre objetos. Pode agregar valor a sistemas de vigilância,aplicações de cidades inteligentes, monitoramento de pessoas com incapacidades físicas ou mentais, dentre outros. Entretanto, conceber um arcabouço que possa ser adaptado a diversas situações sem a necessidade de um especialista nas tecnologias envolvidas, continua sendo um desafio para a área. Neste contexto, a pesquisa realizada tem como base a criação de um arcabouço genérico para detecção de eventos em vídeo com base em regras. Para criação das regras, os usuários formam expressões lógicas utilizando Lógica de Primeira Ordem e relacionamos termos com a álgebra de intervalos de Allen, adicionando assim um contexto temporal às regras. Por ser um arcabouço, ele é extensível, podendo receber módulos adicionais para realização de novas detecções e inferências Foi realizada uma avaliação experimental utilizando vídeos de teste disponíveis no site Youtube envolvendo um cenário de trânsito, com eventos de ultrapassagem do sinal vermelho e vídeos obtidos de uma câmera ao vivo do site Camerite, contendo eventos de carros estacionando. O foco do trabalho não foi criar detectores de objetos (e.g. carros ou pessoas) melhores do que aqueles existentes no estado da arte, mas propor e desenvolver uma estrutura genérica e reutilizável que integra diferentes técnicas de visão computacional. A acurácia na detecção dos eventos ficou no intervalo de 83,82% a 90,08% com 95% de confiança. Obteve acurácia máxima (100%) na detecção dos eventos, quando substituído os detectores de objetos por rótulos atribuídos manualmente, o que indicou a eficácia do motor de inferência desenvolvido para o arcabouço. |