Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Marcon, Danillo Silva |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/10/10134/tde-11022020-125046/
|
Resumo: |
A farmacovigilância de uma empresa veterinária pode compreender a análise de relatos espontâneos de eventos adversos (EA) relacionados aos seus produtos. No presente estudo foi elaborado um fluxograma de classificação de EA que foi usado para analisar EA notificados ao serviço de atendimento ao cliente e farmacovigilância de uma empresa veterinária no Brasil. Os binômios produto-EA foram caracterizados em termos das suas frequências e posteriormente foram utilizados três modelos de detecção de sinais: Reporting Odds Ratio, Bayesian confidence propagation neural network, e Gamma Poisson Shrinker. Os sinais detectados com os três métodos foram classificados de acordo com a sua intensidade, sempre com o sinal mais intenso na primeira posição. Entre os sinais detectados pelos três métodos, as posições de cada sinal foram somadas para obter uma classificação agregada que levasse em consideração os resultados dos três métodos e permitisse uma interpretação serial. Entre os 531 relatos foram identificados 20 EA, 54 binômios produto-EA e 34 binômios produto-reação adversa medicamentosa. Do total de relatos 7 foram sinais identificados pelos três métodos utilizados. A classificação de EA seguindo critérios explícitos e o uso combinado de mais de um método de detecção de sinais aprimoram a farmacovigilância baseada em relatos espontâneos |