Quantisização da Álgebra U(g) para uma Álgebra de Lie simples g.
Ano de defesa: | 2024 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Ciências Exatas Brasil UFAM Programa de Pós-graduação em Matemática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.ufam.edu.br/handle/tede/10232 |
Resumo: | Os grupos quânticos associados a uma Álgebra de Lie, denotados por U_h(g) são deformações da Álgebra envolvente universal associada a álgebra de Lie g, que é uma Álgebra de Hopf. Alem disso, as álgebras quânticas de Lie L_h(g) são generalizações de Álgebras de Lie g cujas constantes de estrutura são séries de potências em h. As Álgebras L_h(g) são derivados das Álgebras envolventes quântizadas U_h(g), com um colchete quântico que satisfaz uma generalização da antissimetria. Partindo dos conceitos anteriores, neste trabalho o grupo quântico U_h(g) e a Álgebra de Lie quântica L_h(g) serão construídos para o caso explícito da Álgebra de Lie linear especial g=sl_2(C) e posteriormente generalizados para uma Álgebra de Lie simples sobre C de dimensão finita. |