Linearização de campos de vetores
Ano de defesa: | 2023 |
---|---|
Autor(a) principal: | |
Outros Autores: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal do Amazonas
Instituto de Ciências Exatas Brasil UFAM Programa de Pós-graduação em Matemática |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://tede.ufam.edu.br/handle/tede/9688 |
Resumo: | Este trabalho tem por objetivo estudar alguns resultados fundamentais em Sistemas Dinâmicos, principalmente acerca da linearização de campos de vetores, isto é, encontrar conjugações entre o campo e sua parte linear em vizinhanças de determinados pontos. Para iniciar, apresentamos o Teorema da Variedade Estável para campos. Para finalizar, apresentamos o Teorema de Linearização de Poincaré para campos e uma versão do critério de comutatividade de Guillemin-Sternberg para famílias de campos de vetores com ponto crítico nulo em comum. Contamos ainda com um apêndice, apresentando de forma breve os Teoremas de Hartman-Grobman, que mostram de forma definitiva que campos de vetores e difeomorfismos são conjugados às suas derivadas na vizinhança de uma singularidade hiperbólica. |