Ações e folheações polares em variedades de Hadamard
Ano de defesa: | 2014 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de São Carlos
Câmpus São Carlos |
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática - PPGM
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Palavras-chave em Inglês: | |
Área do conhecimento CNPq: | |
Link de acesso: | https://repositorio.ufscar.br/handle/20.500.14289/7049 |
Resumo: | O objetivo principal deste trabalho é apresentar alguns resultados recentes na teoria de folheações polares, também chamadas de folheações riemannianas singulares com seções, em variedades de curvatura não positiva, presentes no artigo [24]. As ações polares também são estudadas, pois são objetos de pesquisa ativa que motivam e ilustram o estudo das folheações polares. Fornecemos uma demonstração de que não existem folheações polares próprias em variedades compactas de curvatura não positiva. Além disso, apresentamos um resultado que descreve globalmente as folheações polares próprias em variedades de Hadamard. Abordamos este resultado também no contexto particular das ações polares, utilizando a teoria de subvariedades taut. As ações adjunta e por conjugação são brevemente estudadas como exemplos clássicos de ações polares. |