Estimativas de Gaps entre autovalores consecutivos do Laplaciano

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Silva, Cristiano de Souza
Outros Autores: http://lattes.cnpq.br/2200260736244686
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Amazonas
Instituto de Ciências Exatas
Brasil
UFAM
Programa de Pós-graduação em Matemática
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://tede.ufam.edu.br/handle/tede/7577
Resumo: Este trabalho é baseado no artigo Estimates of the Gaps Between Consecutive Eigenvalues of Laplacian de Daguang Chen, Tao Zheng e Hongcang Yang em que os autores obtiveram estimativas para o limite superior do gap entre autovalores consecutivos para o problema de autovalor de Dirichlet do Laplaciano em um domínio limitado no espaço Euclidiano. Tais estimativas são as melhores possíveis em relação à fórmula de Weyl. Além disso, uma conjectura para o problema do autovalor em uma variedade Riemanniana foi proposta. Este sendo motivado por dois exemplos, um no contexto de um espaço hiperbólico e o outro no contexto de uma variedade Riemanniana completa, não compacta, simplesmente conexa, com curvatura seccional negativa limitada.