Identidades polinomiais com involução de álgebras de incidência

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Ewerton da Silva Lemes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Brasil
Departamento de Matemática
Programa de Pós-Graduação em Matemática
UEM
Maringá, PR
Centro de Ciências Exatas
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.uem.br:8080/jspui/handle/1/5525
Resumo: In this work we study polynomial identities with an involution in an incidence algebra I(P, F ) where P is a connected locally finite poset with an involution ? whose largest chain has, at most, 3 elements, and F is a field of characteristic zero. We determine the involutions and automorphisms of the crown C2n, its equivalent involutions as well and, from that, we classify the involutions on I(C2n, F ) by determining its equivalence classes