O problema de Cauchy para a equação da onda cúbica

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Farias, Marcos Alves de
Orientador(a): Santos Filho, José Ruidival Soares dos lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de São Carlos
Programa de Pós-Graduação: Programa de Pós-Graduação em Matemática - PPGM
Departamento: Não Informado pela instituição
País: BR
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.ufscar.br/handle/ufscar/5878
Resumo: In this work, we study the result of global well-Posedness for the cubic wave equation @2 t u&#56256;&#56320;_u+u3 = 0 in R_R3, where the Cauchy data is in the Sobolev space Hs(R3)_ Hs&#56256;&#56320;1(R3) with 13 18 < s < 1. The proof is based on the work of T. Roy, [23], in this paper Roy propose a almost conservation law for the energy and from this he get a inequality that together with the local well-posedness theory proved by Lindbald and Sogge in [18] guarantee the global well-posedness for the problem.