Detalhes bibliográficos
Ano de defesa: |
2011 |
Autor(a) principal: |
Farias, Marcos Alves de |
Orientador(a): |
Santos Filho, José Ruidival Soares dos
![lattes](/bdtd/themes/bdtd/images/lattes.gif?_=1676566308) |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Universidade Federal de São Carlos
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Matemática - PPGM
|
Departamento: |
Não Informado pela instituição
|
País: |
BR
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://repositorio.ufscar.br/handle/ufscar/5878
|
Resumo: |
In this work, we study the result of global well-Posedness for the cubic wave equation @2 t u��_u+u3 = 0 in R_R3, where the Cauchy data is in the Sobolev space Hs(R3)_ Hs��1(R3) with 13 18 < s < 1. The proof is based on the work of T. Roy, [23], in this paper Roy propose a almost conservation law for the energy and from this he get a inequality that together with the local well-posedness theory proved by Lindbald and Sogge in [18] guarantee the global well-posedness for the problem. |