Advances in imitation learning from observation

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: Santos Júnior, Juarez Monteiro dos lattes
Orientador(a): Barros, Rodrigo Coelho lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede2.pucrs.br/tede2/handle/tede/11131
Resumo: A Imitação por Observação, técnica computacional destinada ao ensino de agentes por meio da observação de demonstrações de especialistas, enfrenta desafios significativos como baixo desempenho, problemas com mínimos locais e exploração ineficaz do espaço de estados. Apesar das recentes abordagens empregarem dados não rotulados para decodificar informações de maneira auto-supervisionada, persistem os desafios a serem superados. Em resposta a tais desafios, a presente tese introduz quatro novos métodos destinados à imitação por observação. Ainda, apresenta um estudo aprofundado sobre a resiliência dos métodos de aprendizado por imitação, proporcionando uma melhor compreensão de seu desempenho e robustez em diversos contextos. As contribuições dos métodos propostos são evidenciadas pelos resultados positivos alcançados. Foi verificado que o uso de um mecanismo de amostragem pode aperfeiçoar os ciclos iterativos de aprendizado, tornandoos mais equilibrados. A inclusão de um mecanismo de exploração revelou potencial para exceder o desempenho de especialistas e estabelecer novos patamares na área. Além disso, o emprego de mecanismos de aprendizado por reforço e de aprendizado adversário mostrou-se capaz de gerar políticas mais eficientes, obtendo resultados significativos com menos amostras. As estratégias propostas melhoraram o desempenho e a eficiência dos atuais métodos, ao mesmo tempo que minimizam a complexidade da aquisição de dados de especialistas