Detalhes bibliográficos
Ano de defesa: |
2023 |
Autor(a) principal: |
Santos Júnior, Juarez Monteiro dos
 |
Orientador(a): |
Barros, Rodrigo Coelho
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Tese
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://tede2.pucrs.br/tede2/handle/tede/11131
|
Resumo: |
A Imitação por Observação, técnica computacional destinada ao ensino de agentes por meio da observação de demonstrações de especialistas, enfrenta desafios significativos como baixo desempenho, problemas com mínimos locais e exploração ineficaz do espaço de estados. Apesar das recentes abordagens empregarem dados não rotulados para decodificar informações de maneira auto-supervisionada, persistem os desafios a serem superados. Em resposta a tais desafios, a presente tese introduz quatro novos métodos destinados à imitação por observação. Ainda, apresenta um estudo aprofundado sobre a resiliência dos métodos de aprendizado por imitação, proporcionando uma melhor compreensão de seu desempenho e robustez em diversos contextos. As contribuições dos métodos propostos são evidenciadas pelos resultados positivos alcançados. Foi verificado que o uso de um mecanismo de amostragem pode aperfeiçoar os ciclos iterativos de aprendizado, tornandoos mais equilibrados. A inclusão de um mecanismo de exploração revelou potencial para exceder o desempenho de especialistas e estabelecer novos patamares na área. Além disso, o emprego de mecanismos de aprendizado por reforço e de aprendizado adversário mostrou-se capaz de gerar políticas mais eficientes, obtendo resultados significativos com menos amostras. As estratégias propostas melhoraram o desempenho e a eficiência dos atuais métodos, ao mesmo tempo que minimizam a complexidade da aquisição de dados de especialistas |