Detalhes bibliográficos
Ano de defesa: |
2021 |
Autor(a) principal: |
Pooch, Eduardo Henrique Pais
 |
Orientador(a): |
Barros, Rodrigo Coelho
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/9790
|
Resumo: |
Radiografias são exames primários para a avaliação das condições do tórax. Na prática clínica, vem se popularizando a utilização de abordagens de aprendizado profundo para apoiar radiologistas no processo de tomada de decisão visando aumentar a acurácia diagnóstica. Para dar suporte adequado aos radiologistas, é insuficiente um modelo que simplesmente infere um rótulo diagnóstico. Idealmente, o modelo deve fornecer mais informações para apoiar o resultado da classificação, como a localização espacial do achado radiológico. Para treinar adequadamente modelos de aprendizado profundo, geralmente é necessário utilizar muitos dados anotados. Há uma grande quantidade de imagens de radiografias de tórax disponíveis publicamente, anotadas de acordo com a presença de achados radiológicos, mas poucas contêm uma anotação com a localização desses achados. O objetivo deste trabalho é utilizar a quantia limitada de dados anotados e a vasta quantia de dados não anotados para melhorar o desempenho de métodos de localização automática de patologias em radiografias de tórax. Identificamos o estado-da-arte de métodos semi-supervisionados e avaliamos seu desempenho em um cenário de classificação. Em seguida, estendemos o melhor método, Mean Teacher, para realizar a tarefa de localização em um framework de aprendizado de múltiplas instâncias, introduzindo nosso método C-MIL. Nesse paradigma, existem dois tipos de rótulos: um rótulo geral que é conhecido, e um rótulo mais específico e desconhecido mas que é relacionado ao conhecido, no caso, a presença de patologia e sua localização. Os resultados mostram melhorias na aplicação de regularização de consistência em um cenário de localização por meio de aprendizado de múltiplas instâncias e demonstram que os métodos de aprendizado semi-supervisionado são promissores para o avanço do desempenho de métodos de localização automática de patologias em imagens médicas. |