Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Ballester, Pedro Lemos
 |
Orientador(a): |
Barros, Rodrigo Coelho
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/8843
|
Resumo: |
Aplicações com aprendizado de máquina possuem diversas suposições sobre o cenário em que são colocadas. Uma suposição comum é a de que o ambiente de teste segue a mesma distribuição dos dados de treino. Essa suposição é sistematicamente quebrada em cénarios do mundo real; a diferença entre essas distribuições é conhecida como domain shift. Adaptação de domínio não-supervisionada visa mitigar esse problema impulsionando o conhecimento dos modelos com dados do ambiente de teste. Uma das áreas mais sensíveis a domain shift é a de imagens médicas. Devido a heterogeneidade das distribuições de dados das máquinas de aquisição de imagens, os modelos tendem a variar sua performance preditiva quando lidam com imagens vindas de máquinas sem nenhum exemplo no conjunto de treino. Este trabalho propõe duas contribuições. Primeiramente, o uso de self ensembling em adaptação de domínio para segmentação de imagens médicas para segmentação de substância cinzenta na medula espinhal é introduzido. Em seguida, baseado no sucesso do self-ensembling, outros trabalhos recentes da literatura de aprendizado semi-supervisionado são adaptados para o contexto apresentado, nominalmente, unsupervised data augmentation e MixMatch. Foram conduzidos estudos de ablação e experimentos para compreensão do comportamento dos métodos e comparação dos seus melhores resultados. Os resultados indicam uma melhoria em relação a treinamento puramente supervisionado, além de demonstrar que os métodos recentes de aprendizado semi-supervisionado são promissores para o campo de adaptação de domínio em segmentação de imagens médicas. |