Detalhes bibliográficos
Ano de defesa: |
2017 |
Autor(a) principal: |
Paula, Thomas da Silva |
Orientador(a): |
Barros, Rodrigo Coelho
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Faculdade de Informática
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/7563
|
Resumo: |
Reconhecimento facial é um dos assuntos mais estudos no campo de Visão Computacional. Dada uma imagem arbitrária ou um frame arbitrário, o objetivo do reconhecimento facial é determinar se existem faces na imagem e, se existirem, obter a localização e a extensão de cada face encontrada. Tal detecção é facilmente feita por seres humanos, porém continua sendo um desafio em Visão Computacional. O alto grau de variabilidade e a dinamicidade da face humana tornam-a difícil de detectar, principalmente em ambientes complexos. Recentementemente, abordagens de Aprendizado Profundo começaram a ser utilizadas em tarefas de Visão Computacional com bons resultados. Tais resultados abriram novas possibilidades de pesquisa em diferentes aplicações, incluindo Reconhecimento Facial. Embora abordagens de Aprendizado Profundo tenham sido aplicadas com sucesso para tal tarefa, a maior parte das implementações estado da arte utilizam detectores faciais off-the-shelf e não avaliam as diferenças entre eles. Em outros casos, os detectores faciais são treinados para múltiplas tarefas, como detecção de pontos fiduciais, detecção de idade, entre outros. Portanto, nós temos três principais objetivos. Primeiramente, nós resumimos e explicamos alguns avanços do Aprendizado Profundo, detalhando como cada arquitetura e implementação funcionam. Depois, focamos no problema de detecção facial em si, realizando uma rigorosa análise de alguns dos detectores existentes assim como algumas implementações nossas. Nós experimentamos e avaliamos variações de alguns hiper-parâmetros para cada um dos detectores e seu impacto em diferentes bases de dados. Nós exploramos tanto implementações tradicionais quanto mais recentes, além de implementarmos nosso próprio detector facial. Por fim, nós implementamos, testamos e comparamos uma abordagem de meta-aprendizado para detecção facial, que visa aprender qual o melhor detector facial para uma determinada imagem. Nossos experimentos contribuem para o entendimento do papel do Aprendizado Profundo em detecção facial, assim como os detalhes relacionados a mudança de hiper-parâmetros dos detectores faciais e seu impacto no resultado da detecção facial. Nós também mostramos o quão bem features obtidas com redes neurais profundas — treinadas em bases de dados de propósito geral – combinadas com uma abordagem de meta-aprendizado, se aplicam a detecção facial. Nossos experimentos e conclusões mostram que o aprendizado profundo possui de fato um papel notável em detecção facial. |