Detalhes bibliográficos
Ano de defesa: |
2018 |
Autor(a) principal: |
Souza, Douglas Matos de
 |
Orientador(a): |
Ruiz, Duncan Dubugras Alcoba
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/9250
|
Resumo: |
In computer vision, processing face images are accompanied by a series of complexities. Examples include variation of pose, light, face expression, and make up. Although all aspects are considered important, the one that impacts the most face-related computer vision systems is pose. In face recognition, for example, it has been long desired to have a method capable of bringing faces to the same pose, usually a frontal view, in order to ease recognition. Synthesizing different views of a face is a great challenge, mostly because in non-frontal face images there are loss of information when one side of the face occludes the other (also known as self-occlusion). Several methods to address face pose synthesis were proposed, but the results usually miss a realistic finish. In this work, we present novel methods that improve on the previous ones, showing higher synthesis quality. |