[en] AUTOMATIC SEGMENTATION OF BREAKOUTS IN IMAGE LOGS WITH DEEP LEARNING

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: GABRIELLE BRANDEMBURG DOS ANJOS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62433&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=62433&idi=2
http://doi.org/10.17771/PUCRio.acad.62433
Resumo: [pt] Breakouts são zonas colapsadas nas paredes de poços causadas por falhas de compressão. A identificação desses artefatos é fundamental para estimar a estabilidade das perfurações e para obter a orientação e magnitude da tensão horizontal máxima presente na formação rochosa. Tradicionalmente, os intérpretes caracterizam os breakouts manualmente em perfis de imagem, o que pode ser considerado uma tarefa muito demorada e trabalhosa por conta do tamanho massivo dos dados. Outros aspectos que dificultam a interpretação estão associados à complexidade das estruturas e a presença de diversos artefatos ruidosos nos dados de perfil. Sendo assim, métodos tradicionais de processamento de imagem tornam-se ineficientes para solucionar essa tarefa de detecção. Nos últimos anos, soluções baseadas em aprendizado profundo tem se tornado cada vez mais promissoras para problemas de visão computacional, tais como, detecção e segmentação de objetos em imagens. O presente trabalho tem como objetivo a classificação pixel a pixel das regiões de breakouts em dados de perfil de imagem. Para isso foi empregado a rede neural convolucional DC-UNet de forma supervisionada. Essa arquitetura é uma variação do modelo clássico U-Net, a qual é uma rede consagrada na segmentação de dados médicos. A metodologia proposta atingiu uma média de 72.3por cento de F1-Score e, em alguns casos, os resultados qualitativos mostraram-se melhores que a interpretação de referência. Após avaliação dos resultados junto a especialistas da área, o método pode ser considerado promissor na caracterização e segmentação automática de estruturas em perfis de imagem de poços.