Geometric deep learning for functional neuroimaging analysis

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Marcon, Matheus Zampieri lattes
Orientador(a): Meneguzzi, Felipe Rech lattes
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Pontifícia Universidade Católica do Rio Grande do Sul
Programa de Pós-Graduação: Programa de Pós-Graduação em Ciência da Computação
Departamento: Escola Politécnica
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: http://tede2.pucrs.br/tede2/handle/tede/9762
Resumo: O estudo do conectoma cerebral humano, um conjunto complexo de relações entre redes neurais cerebrais que associam estrutura cerebral e funcionalidade, têm recebido crescente interesse na área de neuroimagem ao longo da última década. Técnicas de aprendizado profundo constituem o estado da arte para tarefas de classificação de diferentes disordens neurológicas a partir de neuroimagens, proporcionando análises em profundidade acerca de características inerentes da atividade e conectividade cerebrais sem a necessidade prévia de seleção de features. No entanto, operações convolucionais de redes profundas tradicionais são aplicadas a regiões fixas de elementos durante o aprendizado, enquanto dados de conectoma cerebral são melhor representados na forma de grafos, com elementos espacialmente dispersos. Neste trabalho, fazemos uso de técnicas de aprendizado profundo geométrico para análise de dados de conectoma de imagens de ressonância magnética funcional (fMRI), buscando a identificação e extração de representações de características de alto nível das dinâmicas de redes cerebrais envolvidas na cognição humana. Nossas conclusões sugerem que as técnicas investigadas podem superar o estado da arte relativo a modelos de classificação de dados de fMRI além de possibilitar uma metodologia simples para análise de resultados.