Detalhes bibliográficos
Ano de defesa: |
2022 |
Autor(a) principal: |
Esper, Katherine Bianchini
 |
Orientador(a): |
Meneguzzi, Felipe Rech
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Escola Politécnica
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
https://tede2.pucrs.br/tede2/handle/tede/10586
|
Resumo: |
As técnicas de neuroimagem têm sido amplamente utilizadas nas últimas décadas para avaliar os padrões de ativação do cérebro. O projeto de tarefas é um dos desafios mais importantes para os estudos de neuroimagem, para que seja possível obter a melhor modelagem para avaliar os padrões cerebrais de um sujeito e entre os sujeitos. Os experimentos de Ressonância Magnética funcional (RMf) dependem de um design de paradigmas preciso e eficaz, selecionando as melhores sequências de estímulos para ativar regiões cerebrais específicas. Neste projeto, propomos o uso de Planning Domain Definition Language (PDDL+) para modelar diferentes paradigmas e suas respectivas ativações cerebrais, resultando em uma ferramenta para geração automática de estímulos para exames de RMf. Desenvolvemos uma aplicação de planejamento automatizado para pesquisa neurocientífica e planejamento pré-cirúrgico. O primeiro deve ajudar a garantir um desenho experimental que permita a análise das regiões cerebrais de interesse do estudo. O último, deve ajudar os cirurgiões a selecionar os estímulos corretos para uma exploração pré-cirúrgica não invasiva das funções cognitivas que podem ser afetadas pelo desbridamento de lesões cerebrais. |