Detalhes bibliográficos
Ano de defesa: |
2016 |
Autor(a) principal: |
Heinsfeld, Anibal Sólon
 |
Orientador(a): |
Meneguzzi, Felipe Rech
 |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
eng |
Instituição de defesa: |
Pontifícia Universidade Católica do Rio Grande do Sul
|
Programa de Pós-Graduação: |
Programa de Pós-Graduação em Ciência da Computação
|
Departamento: |
Faculdade de Informática
|
País: |
Brasil
|
Palavras-chave em Português: |
|
Palavras-chave em Inglês: |
|
Área do conhecimento CNPq: |
|
Link de acesso: |
http://tede2.pucrs.br/tede2/handle/tede/7459
|
Resumo: |
O Espectro Autista (EA) compreende uma série de desordens no desenvolvimento neurológico, caracterizado por deficiências sociais e dificuldades de comunicação, comportamentos repetitivos e atrasos cognitivos. Atualmente, o diagnóstico do EA é amplamente baseado em medições comportamentais, que pode ser demorado, e depende da cooperação do paciente e da experiência do examinador. Para mitigar esta limitação, investigamos padrões neurais que ajudem no diagnóstico de desordens do EA. Nesta dissertação, usamos técnicas de deep learning, a fim de extrair características robustas de neuroimagens de pacientes com autismo. Neuroimagens contêm cerca de 300.000 pontos espaciais, com aproximadamente 200 medições cada. As técnicas de deep learning são úteis para extrair características relevantes que diferenciam autistas de não-autistas. Ao utilizar denoising autoencoders, uma técnica de deep learning específica que visa reduzir a dimensionalidade dos dados, nós superamos o estado da arte, atingindo 69% de acurácia, comparado com o melhor resultado encontrado na literatura, com 60% de acurácia. |