[en] A NEW APPROACH TO GENERATE TIME SERIES PERIODICAL SCENARIOS VIA NON-LINEAR MODELS

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: VICTOR EDUARDO LEITE DE A DUCA
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=33375&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=33375&idi=2
http://doi.org/10.17771/PUCRio.acad.33375
Resumo: [pt] Os modelos autorregressivos são comumente encontrados dentro do contexto de séries hidrológicas, especificamente em séries de vazões e/ou ENA (Energia Natural Afluente). Muitos destes modelos são de ordem 1, possuem parâmetros constantes ou periódicos e necessitam do requisito de normalidade. Segundo a literatura, séries de vazões anuais podem ser aproximadas para distribuições normais, porém em períodos de tempo curtos como diário, semanal e mensal esta característica não é observada, especialmente pelo problema de assimetria. Devido a isto, uma nova classe de modelo de ordem 1 foi estudada na tentativa de suprir tal problema. O novo modelo mantém estrutura autorregressiva, pode ser aditivo, multiplicativo ou híbrido, onde incorpora propriedades aditivas e multiplicativas conjunta- mente, porém suas marginais assumirão distribuição gama. Além disso, a modelagem parte do pressuposto que os Métodos de Momentos são eficientes para estimação de seus parâmetros. Recentemente esta abordagem, sob a forma híbrida, não demonstrou sucesso para o contexto do despacho hidrotérmico brasileiro. O presente trabalho foca na análise completa do modelo híbrido para as séries do Setor Elétrico Brasileiro, trazendo como novidade a estimação via máxima verossimilhança além dos estudos isolados de modelos aditivos e multiplicativos. Os resultados revelaram uma linha de pesquisa promissora, abrindo um campo de possibilidades para que novas ordens superiores a primeira ou distribuições assimétricas possam ser estudadas partindo deste princípio.