[pt] MÉTODO DA APROXIMAÇÃO AMOSTRAL PARA RESTRIÇÕES PROBABILÍSTICAS

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: BERNARDO KULNIG PAGNONCELLI
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=32816&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=32816&idi=2
http://doi.org/10.17771/PUCRio.acad.32816
Resumo: [pt] Estudamos aproximações amostrais de problemas com restrições probabilísticas através da aproximação pela média amostral (SAA) e demonstramos as propriedades de convergência relacionadas. Utilizamos SAA para obter bons candidatos à solução e cotas estatísticas para o valor ótimo do problema original. Para ajustar corretamente parâmetros, aplicamos o método a dois problemas com restrições probabilísticas. O primeiro é um problema de seleção de portfolio linear com retornos seguindo uma distribuição lognormal multivariada. O segundo é uma versão com restrições probabilísticas conjuntas de um problema da mistura simplificado. Concluímos com uma aplicação mais exigente ao problema de se determinar a provisão mínima que um agente econômico deve ter de forma a satisfazer uma série de obrigações futuras com probabilidade suficientemente alta.