[en] DATA-DRIVEN JOINT CHANCE-CONSTRAINED OPTIMIZATION FOR THE WORKOVER RIG SCHEDULING PROBLEM

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: IURI MARTINS SANTOS
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61875&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=61875&idi=2
http://doi.org/10.17771/PUCRio.acad.61875
Resumo: [pt] As sondas de intervenção são um recurso crucial na exploração e produção de petróleo, sendo utilizadas nas operações de manutenção de poços. As empresas de petróleo planejam quais sondas atenderão os poços. O Problema de Programação de Plataforma de Trabalho (WRSP) determina quais sondas atenderão os poços e quando as atividades ocorrerão. Com o intuito de auxiliar o WRSP, esta tese propõe uma metodologia de otimização orientada por dados (DD) baseada em regressão, aplicandoa em instâncias reais. Essa abordagem de otimização DD é dividida em três fases: tratamento de dados, onde técnicas de mineração de texto e agrupamento são usadas para refinar e recuperar informações dos dados; modelagem preditiva usando regressão de cume para estimar a duração do workover e as incertezas endógenas do modelo; otimização, onde a previsão da regressão e seu erro aleatório são inseridos nos modelos de restrições probabilísticas conjuntas (JCC), gerando soluções mais resilientes às incertezas. Propomos uma formulação estocástica de JCC baseada em simulação e distância de Wasserstein para gerar cenários e reduzir o tamanho do problema. Esse modelo é comparado com quatro alternativas: um DD não estocástico, um CC integrado estocástico, um modelo estocástico com restrição orçamentária e a abordagem atual da empresa. Para instâncias de pequeno e médio porte, o modelo estocástico JCC garante um nível de confiança de viabilidade e um erro de aproximação inferior a 5 por cento. No entanto, o modelo estocástico JCC não fecha o GAP em instâncias maiores. Para essas instâncias, o modelo DD não estocástico é uma boa alternativa com perturbações não superiores a 10 por cento. No geral, a metodologia de otimização DD encontra cronogramas que são mais frequentemente viáveis e com custos menores em comparação com o método da empresa.