[pt] EXPLORANDO BASES DE CONHECIMENTO EM RDF ATRAVÉS DE PADRÕES DE FORTUIDADE

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: JERONIMO SIROTHEAU DE ALMEIDA EICHLER
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36107&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36107&idi=2
http://doi.org/10.17771/PUCRio.acad.36107
Resumo: [pt] Fortuidade pode ser definida como a descoberta de algo que não está sendo buscado. Em outras palavras, fortuidade trata da descoberta de informação que provê valiosas intuições ao desvendar conhecimento inesperado. O tópico vem recebendo bastante atenção na literatura, uma vez que precisão pode ser justificadamente relaxada com o objetivo de aumentar a satisfação do usuário. Uma área que pode se beneficiar com fortuidade é a área de dados interligados, um gigantesco espaço de dados no qual dados são disponibilizados publicamente. Buscar e extrair informação relevante se torna uma tarefa desafiadora à medida que cada vez mais dados se tornam disponíveis nesse ambiente. Esta tese contribui para enfrentar este desafio de duas maneiras. Primeiro, apresenta um processo de orquestração de consulta que introduz três estratégias para injetar padrões de fortuidade no processo de consulta. Os padrões de fortuidade são inspirados em características básicas de eventos fortuitos, como analogia e perturbação, e podem ser usados para estender os resultados com informações adicionais, sugerindo consultas alternativas ou reordenando os resultados. Em segundo lugar, introduz uma base de dados que pode ser utilizada para comparar diferentes abordagens de obtenção de conteúdo fortuito. A estratégia adotada para construção dessa base de dados consiste em dividir o universo de dados em partições com base em um atributo global e conectar entidades de diferentes partições de acordo com o número de caminhos compartilhados.