[en] CLUSTERING AND DATASET INTERLINKING RECOMMENDATION IN THE LINKED OPEN DATA CLOUD
Ano de defesa: | 2017 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | eng |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30656&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=30656&idi=2 http://doi.org/10.17771/PUCRio.acad.30656 |
Resumo: | [pt] O volume de dados RDF publicados na Web aumentou consideravelmente, o que ressaltou a importância de seguir os princípios de dados interligados para promover a interoperabilidade. Um dos princípios afirma que todo novo conjunto de dados deve ser interligado com outros conjuntos de dados publicados na Web. Esta tese contribui para abordar este princípio de duas maneiras. Em primeiro lugar, utiliza algoritmos de detecção de comunidades e técnicas de criação de perfis para a criação e análise automática de um diagrama da nuvem da LOD (Linked Open Data), o qual facilita a localização de conjuntos de dados na nuvem da LOD. Em segundo lugar, descreve três abordagens, apoiadas por ferramentas totalmente implementadas, para recomendar conjuntos de dados a serem interligados com um novo conjunto de dados, um problema conhecido como problema de recomendação de interligação de conjunto de dados. A primeira abordagem utiliza medidas de previsão de links para produzir recomendações de interconexão. A segunda abordagem emprega algoritmos de aprendizagem supervisionado, juntamente com medidas de previsão de links. A terceira abordagem usa algoritmos de agrupamento e técnicas de criação de perfil para produzir recomendações de interconexão. Essas abordagens são implementadas, respectivamente, pelas ferramentas TRT, TRTML e DRX. Por fim, a tese avalia extensivamente essas ferramentas, usando conjuntos de dados do mundo real. Os resultados mostram que estas ferramentas facilitam o processo de criação de links entre diferentes conjuntos de dados. |