[pt] MINERAÇÃO DE TEXTOS NA COLETA INTELIGENTE DE DADOS NA WEB
Ano de defesa: | 2009 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13212&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=13212&idi=2 http://doi.org/10.17771/PUCRio.acad.13212 |
Resumo: | [pt] Esta dissertação apresenta um estudo sobre a utilização de Mineração de Textos no processo de coleta inteligente de dados na Web. O método mais comum de obtenção de dados na Web consiste na utilização de web crawlers. Web crawlers são softwares que, uma vez alimentados por um conjunto inicial de URLs (sementes), iniciam o procedimento metódico de visitar um site, armazenálo em disco e extrair deste os hyperlinks que serão utilizados para as próximas visitas. Entretanto, buscar conteúdo desta forma na Web é uma tarefa exaustiva e custosa. Um processo de coleta inteligente de dados na Web, mais do que coletar e armazenar qualquer documento web acessível, analisa as opções de crawling disponíveis para encontrar links que, provavelmente, fornecerão conteúdo de alta relevância a um tópico definido a priori. Na abordagem de coleta de dados inteligente proposta neste trabalho, tópicos são definidos, não por palavras chaves, mas, pelo uso de documentos textuais como exemplos. Em seguida, técnicas de pré-processamento utilizadas em Mineração de Textos, entre elas o uso de um dicionário thesaurus, analisam semanticamente o documento apresentado como exemplo. Baseado nesta análise, o web crawler construído será guiado em busca do seu objetivo: recuperar informação relevante sobre o documento. A partir de sementes ou realizando uma consulta automática nas máquinas de buscas disponíveis, o crawler analisa, igualmente como na etapa anterior, todo documento recuperado na Web. Então, é executado um processo de comparação entre cada documento recuperado e o documento exemplo. Depois de obtido o nível de similaridade entre ambos, os hyperlinks do documento recuperado são analisados, empilhados e, futuramente, serão desempilhados de acordo seus respectivos e prováveis níveis de importância. Ao final do processo de coleta de dados, outra técnica de Mineração de Textos é aplicada, objetivando selecionar os documentos mais representativos daquela coleção de textos: a Clusterização de Documentos. A implementação de uma ferramenta que contempla as heurísticas pesquisadas permitiu obter resultados práticos, tornando possível avaliar o desempenho das técnicas desenvolvidas e comparar os resultados obtidos com outras formas de recuperação de dados na Web. Com este trabalho, mostrou-se que o emprego de Mineração de Textos é um caminho a ser explorado no processo de recuperação de informação relevante na Web. |