[en] HYBRID VERSUS PURE MODELS: AN ANALYSIS OF PREDICTION PERFORMANCE USING BRAZILIAN STREAMFLOW

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: ANA PAULA SANTOS DELFINO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35793&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35793&idi=2
http://doi.org/10.17771/PUCRio.acad.35793
Resumo: [pt] O setor elétrico brasileiro é fortemente dependente da energia hidrelétrica e a predição acurada das séries de vazões é essencial para o planejamento e gestão de risco. Recentemente, os modelos híbridos, que combinam técnicas de previsão e pré-processamento de dados, têm se destacado. Entretanto, na literatura, não há consenso sobre a superioridade de previsão destes modelos em relação aos tradicionais (puros). Este trabalho visa contribuir para literatura com a avaliação de performance de previsão e a adequabilidade de modelos puros e híbridos para séries mensais estacionárias e não estacionárias de vazões. Para isso, foram construídos modelos usando as técnicas de previsão de Redes Neurais Artificiais e ARIMA acoplados com as técnicas de pré-processamento de dados Singular Spectrum Analysis (SSA) e Seasonal and Trend decomposition based on Loess (STL). Como resultado, este estudo mostra para a série de Belo Monte (estacionária) os modelos puros obtiveram um melhor desempenho, já para a série de Sobradinho (não estacionária) os modelos híbridos foram os melhores.