[en] HYBRID VERSUS PURE MODELS: AN ANALYSIS OF PREDICTION PERFORMANCE USING BRAZILIAN STREAMFLOW
Ano de defesa: | 2018 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35793&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=35793&idi=2 http://doi.org/10.17771/PUCRio.acad.35793 |
Resumo: | [pt] O setor elétrico brasileiro é fortemente dependente da energia hidrelétrica e a predição acurada das séries de vazões é essencial para o planejamento e gestão de risco. Recentemente, os modelos híbridos, que combinam técnicas de previsão e pré-processamento de dados, têm se destacado. Entretanto, na literatura, não há consenso sobre a superioridade de previsão destes modelos em relação aos tradicionais (puros). Este trabalho visa contribuir para literatura com a avaliação de performance de previsão e a adequabilidade de modelos puros e híbridos para séries mensais estacionárias e não estacionárias de vazões. Para isso, foram construídos modelos usando as técnicas de previsão de Redes Neurais Artificiais e ARIMA acoplados com as técnicas de pré-processamento de dados Singular Spectrum Analysis (SSA) e Seasonal and Trend decomposition based on Loess (STL). Como resultado, este estudo mostra para a série de Belo Monte (estacionária) os modelos puros obtiveram um melhor desempenho, já para a série de Sobradinho (não estacionária) os modelos híbridos foram os melhores. |