[en] ASYMMETRIC EFFECTS AND LONG MEMORY IN THE VOLATILITY OF DJIA STOCKS

Detalhes bibliográficos
Ano de defesa: 2006
Autor(a) principal: MARCEL SCHARTH FIGUEIREDO PINTO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9144&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=9144&idi=2
http://doi.org/10.17771/PUCRio.acad.9144
Resumo: [pt] volatilidade dos ativos financeiros reflete uma reação prosseguida dos agentes a choques no passado ou alterações nas condições dos mercados determinam mudanças na dinâmica da variável? Enquanto modelos fracionalmente integrados vêm sendo extensamente utilizados como uma descrição adequada do processo gerador de séries de volatilidade, trabalhos teóricos recentes indicaram que mudanças estruturais podem ser uma relevante alternativa empírica para o fato estilizado de memória longa. O presente trabalho investiga o que alterações nos mercados significam nesse contexto, introduzindo variações de preços como uma possível fonte de mudanças no nível da volatilidade durante algum período, com grandes quedas (ascensões) nos preços trazendo regimes persistentes de variância alta (baixa). Uma estratégia de modelagem sistemática e flexível é estabelecida para testar e estimar essa assimetria através da incorporação de retornos acumulados passados num arcabouço não-linear. O principal resultado revela que o efeito é altamente significante - estima-se que níveis de volatilidade 25% e 50% maiores estão associados a quedas nos preços em períodos curtos - e é capaz de explicar altos valores de estimativas do parâmetro de memória longa. Finalmente, mostra-se que a modelagem desse efeito traz ganhos importantes para aplicações fora da amostra em períodos de volatilidade alta.