Volatilidade realizada multivariada: uma análise via aprendizado de máquina para dados do mercado brasileiro

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Vieira, Leonardo Ieracitano
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/96/96131/tde-01102021-091638/
Resumo: O presente trabalho é um exercício preditivo para a dinâmica da matriz de covariância incondicional de ativos do mercado brasileiro. Levamos em consideração métodos distintos para o cálculo da matriz, esquivando-se da matriz de covariância amostral e avaliamos o impacto preditivo no uso de regressões com encolhimento na estimação da matriz de covariância explicada pelo seu passado - um formato autorregressivo, portanto. Diferentemente do mundo univariado, o estudo de matriz de covariância tornou-se custoso devido à maldição da dimensionalidade. Tradicionalmente, via VAR, o exercício proposto traria problemas de especificação e também de dimensão, devido ao grande número de covariadas. Os resultados encontrados mostram que não necessariamente temos pior desempenho preditivo ao reduzir o número de séries, mas com a metodologia do MCS não rejeitamos a hipótese de mesma habilidade preditiva entre modelos que selecionam variáveis e que não o fazem. Diante do exercício proposto investigamos quais dificuldades e padrões estão inseridos nos dados no contexto do mercado brasileiro: trata-se de um mercado pouco líquido e que mesmo em ativos mais negociados temos problemas de dados faltantes e de concentração setorial nos ativos mais negociados. Do ponto de vista econômico encontramos resultados em linha com a literatura de referência, mostrando maior dinâmica intra setorial para processos de variância e do ponto de vista preditivo não encontramos um padrão claro para os processos de covariância.