[en] METHODS OF THE REGULARITY THEORY IN THE STUDY OF PARTIAL DIFFERENTIAL EQUATIONS WITH NATURAL GROWTH IN THE GRADIENT

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: GABRIELLE SALLER NORNBERG
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36015&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36015&idi=2
http://doi.org/10.17771/PUCRio.acad.36015
Resumo: [pt] Nesta tese de Doutorado estudamos uma classe de equações diferenciais parciais de segunda ordem, uniformemente elípticas, completamente não-lineares na forma não-divergência, com crescimento superlinear no gradiente e coeficientes mensuráveis. Para equações com crescimento quadrático, provamos que ocorre multiplicidade de soluções quando o operador não é coercivo e investigamos o comportamento qualitativo dos contínuos de soluções obtidos para uma família parametrizada de problemas. Para isso, estendemos a regularidade e as estimativas C1, alfa, de Caffarelli-Swiech-Winter para equações com crescimento, no máximo quadrático, no gradiente, mostrando que as soluções são continuamente diferenciáveis até o bordo. Além disso, mostramos estimativas a priori na norma uniforme via técnicas puramente não-lineares na forma não-divergência, entre elas desigualdades do tipo Harnack e o princípio do máximo forte de Vázquez para equações de nosso tipo.