[en] PORTFOLIO SELECTION VIA DATA-DRIVEN DISTRIBUTIONALLY ROBUST OPTIMIZATION

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: JOAO GABRIEL FELIZARDO S SCHLITTLER
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36002&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=36002&idi=2
http://doi.org/10.17771/PUCRio.acad.36002
Resumo: [pt] Otimização de portfólio tradicionalmente assume ter conhecimento da distribuição de probabilidade dos retornos ou pelo menos algum dos seus momentos. No entanto, é sabido que a distribuição de probabilidade dos retornos muda com frequência ao longo do tempo, tornando difícil a utilização prática de modelos puramente estatísticos, que confiam indubitavelmente em uma distribuição estimada. Em contrapartida, otimização robusta considera um completo desconhecimento da distribuição dos retornos, e por isto, buscam uma solução ótima para todas as realizações possíveis dentro de um conjunto de incerteza dos retornos. Mais recentemente na literatura, técnicas de distributionally robust optimization permitem lidar com a ambiguidade com relação à distribuição dos retornos. No entanto essas técnicas dependem da construção do conjunto de ambiguidade, ou seja, distribuições de probabilidade a serem consideradas. Neste trabalho, propomos a construção de conjuntos de ambiguidade poliédricos baseado somente em uma amostra de retornos. Nestes conjuntos, as relações entre variáveis são determinadas pelos dados de maneira não paramétrica, sendo assim livre de possíveis erros de especificação de um modelo estocástico. Propomos um algoritmo para construção do conjunto e, dado o conjunto, uma reformulação computacionalmente tratável do problema de otimização de portfólio. Experimentos numéricos mostram que uma melhor performance do modelo em comparação com benchmarks selecionados.