[en] AGE ESTIMATION FROM FACIALS IMAGES

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: JOSE DAVID BERMUDEZ CASTRO
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: MAXWELL
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25755&idi=1
https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=25755&idi=2
http://doi.org/10.17771/PUCRio.acad.25755
Resumo: [pt] Esta dissertação tem por objetivo investigar métodos de estimação da idade a partir de imagens faciais. Avalia-se o impacto de distintos fatores sobre a acurácia da estimativa, especificamente, a acurácia da localização de pontos fiduciais, métodos de extração de atributos, de redução de dimensionalidade, e técnicas de regressão. Adicionalmente, foi estudada a influência da raça e do sexo na acurácia da estimação da idade desenvolvido. Consideraram-se cinco métricas de desempenho do sistema, especificamente, o erro médio absoluto (MAE), o erro médio absoluto por década (MAE/D), o erro médio absoluto por idade (MAE/A), o escore acumulado (CS), e os intervalos de confiança (IC). Os experimentos foram realizados empregando dois bancos de dados públicos, cujas imagens estão rotuladas com a idade da face. Os resultados indicaram que o método automático para detecção de pontos fiduciais da face tem uma repercussão moderada sobre a acurácia das estimativas. Entre as variantes analisadas, a que apresentou a melhor acurácia foi o sistema que emprega os AAMs (Active Appearance Models) como método de extração de atributos, o PCA (Principal Components Analysis) como método para reduzir dimensionalidade, e as SVRs (Support Vector Regression) como técnica para fazer regressão.