Detalhes bibliográficos
Ano de defesa: |
2019 |
Autor(a) principal: |
Gonçalves, Claudio Vinicius |
Orientador(a): |
Não Informado pela instituição |
Banca de defesa: |
Não Informado pela instituição |
Tipo de documento: |
Dissertação
|
Tipo de acesso: |
Acesso aberto |
Idioma: |
por |
Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: |
|
Link de acesso: |
https://www.teses.usp.br/teses/disponiveis/55/55137/tde-04022020-121437/
|
Resumo: |
A introdução da Blockchain e das criptomoedas trouxeram novas formas de realizar pagamentos, contratos, etc. Além desses benefícios, as criptomoedas também e tornaram opções de investimento para investidores. Esses investimentos apresentam grande risco, pois tem uma variabilidade muito alta, por exemplo a ETH, desde a sua criação, apresenta um crescimento de 13:000% desde 2014, onde foi oferta inicial da moeda. Esse projeto propõe a criação de modelos estatísticos clássicos e de aprendizado de máquina, para prever uma hora a frente o valor da criptomoeda. Para isso, inicialmente realizamos uma simulação com uma série de Lorenz, onde ajustamos um modelo ARMA e uma maquina de vetores de suporte com o Kernel Laplaciano para verificar a eficiência das técnicas. Iniciamos criando a série de Lorenz, ajustando os modelos e realizando previsões um passo a frente 24 vezes. Para verificarmos a qualidade do nosso modelo, comparamos esses valores preditos com os valores reais da série, e usamos como indicadores de qualidade as medidas RMSE e MAE, que na simulação resultaram para o modelo ARMA(2,3) RMSE = 2,23 e MAE = 1,85 e para o SVR RMSE = 3,66 e MAE = 2,5. Utilizando os valores preditos por ambos os modelos ajustados, buscamos melhorar a precisão combinando os modelos, obtendo assim para o SVR-ARMA RMSE = 2,23 e MAE = 1,77, melhorando assim a qualidade preditiva dos modelos. Seguimos aplicando para os dados reais as técnicas, inicialmente aplicando uma transformação log-retornos para a série de dados, e obtemos para o modelo ARMA(2,3) RMSE = 2,23 e MAE = 1,85 e para o SVR RMSE = 3,15 e MAE = 2,4, e quando combinamos os modelos temos o SVR-ARMA RMSE = 2,08 e MAE = 1, 75. |