[en] AN ANALYSIS OF LITHOLOGY CLASSIFICATION USING SVM, MLP AND ENSEMBLE METHODS
Ano de defesa: | 2013 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
MAXWELL
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=21205&idi=1 https://www.maxwell.vrac.puc-rio.br/colecao.php?strSecao=resultado&nrSeq=21205&idi=2 http://doi.org/10.17771/PUCRio.acad.21205 |
Resumo: | [pt] A classificação de litologias e uma tarefa importante na caracterização de reservatorios de petróleo. Um de seus principais objetivos e dar suporte ao planejamento e as atividades de perfuracao de poços. Dessa forma, quanto mais rapidos e eficazes sejam os algoritmos de classificacao, mais confiavel ser a as decisoes tomadas pelos geologos e geofısicos. Esta dissertação analisa os metodos ensemble aplicados a classificacao automática de litologias. Para isso, foi realizada uma comparação entre classificadores individuais (Support Vector Machine e Multilayer Perceptron) e estes mesmos classificadores com métodos Ensemble (Bagging e Adaboost). Assim, concluımos com uma avaliação comparativa entre as técnicas, bem como apresentamos o trade-off em utilizar métodos Ensemble em substituição aos classificadores individuais. |