"Abordagem genética para seleção de um conjunto reduzido de características para construção de ensembles de redes neurais: aplicação à língua eletrônica"

Detalhes bibliográficos
Ano de defesa: 2005
Autor(a) principal: Ferreira, Ednaldo José
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://www.teses.usp.br/teses/disponiveis/55/55134/tde-18052006-143603/
Resumo: As características irrelevantes, presentes em bases de dados de diversos domínios, deterioram a acurácia de predição de classificadores induzidos por algoritmos de aprendizado de máquina. As bases de dados geradas por uma língua eletrônica são exemplos típicos onde a demasiada quantidade de características irrelevantes e redundantes prejudicam a acurácia dos classificadores induzidos. Para lidar com este problema, duas abordagens podem ser utilizadas. A primeira é a utilização de métodos para seleção de subconjuntos de características. A segunda abordagem é por meio de ensemble de classificadores. Um ensemble deve ser constituído por classificadores diversos e acurados. Uma forma efetiva para construção de ensembles de classificadores é por meio de seleção de características. A seleção de características para ensemble tem o objetivo adicional de encontrar subconjuntos de características que promovam acurácia e diversidade de predição nos classificadores do ensemble. Algoritmos genéticos são técnicas promissoras para seleção de características para ensemble. No entanto, a busca genética, assim como outras estratégias de busca, geralmente visam somente a construção do ensemble, permitindo que todas as características (relevantes, irrelevantes e redundantes) sejam utilizadas. Este trabalho apresenta uma abordagem baseada em algoritmos genéticos para construção de ensembles de redes neurais artificiais com um conjunto reduzido das características totais. Para melhorar a acurácia dos ensembles, duas abordagens diferenciadas para treinamento de redes neurais foram utilizadas. A primeira baseada na interrupção precoce do treinamento com o algoritmo back-propagation e a segunda baseada em otimização multi-objetivo. Os resultados obtidos comprovam a eficácia do algoritmo proposto para construção de ensembles de redes neurais acurados. Também foi constatada sua eficiência na redução das características totais, comprovando que o algoritmo proposto é capaz de construir um ensemble utilizando um conjunto reduzido de características.