Estudo comparativo entre metodologias de aprendizado de máquina e híbridas aplicadas a risco de crédito
Ano de defesa: | 2019 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Fundação Escola de Comércio Álvares Penteado
Centro Universitário Álvares Penteado Centro Universitrio lvares Penteado Brasil FECAP PPG1 |
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | http://tede.fecap.br:8080/handle/123456789/818 |
Resumo: | Para bancos e empresas que possuem operação de crédito, deter relações com clientes de alto risco aumenta a chance de inadimplência, a necessidade de alocação de capital e a exposição a prejuízos financeiros. Dessa forma, há interesse em aprimorar as avaliações de risco de crédito; e o cenário atual de Big Data fomenta o interesse em metodologias de inteligência artificial, uma vez que a assertividade dessas cresce à medida em que se aumenta a volumetria de dados utilizados. Essa dissertação tem por objetivo comparar metodologias quantitativas aplicáveis à gestão de risco de crédito e concluir se técnicas baseadas em inteligência artificial apresentam performance superior às técnicas tradicionais. Foram estudadas as metodologias Regressão Logística, Support Vector Machine, Random Forest, Gradient Boosting e Modelos híbridos, em visão pessoa física e visão pessoa jurídica. Para ambas visões, a comparação dos modelos via métricas de performance AUC, KS e Taxa de acerto indicou o Gradient Boosting como metodologia campeã. |