Export Ready — 

Improving Optimum-Path Forest Classification Using Confidence Measures

Bibliographic Details
Main Author: Fernandes, Silas E. N.
Publication Date: 2015
Other Authors: Scheirer, Walter, Cox, David D., Papa, Joao Paulo [UNESP], Pardo, A., Kittler, J.
Format: Conference object
Language: eng
Source: Repositório Institucional da UNESP
Download full: http://dx.doi.org/10.1007/978-3-319-25751-8_74
http://hdl.handle.net/11449/161448
Summary: Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this work, we presented an improved version of the Optimum-Path Forest classifier, which learns a score-based confidence level for each training sample in order to turn the classification process smarter, i.e., more reliable. Experimental results over 20 benchmarking datasets have showed the effectiveness and efficiency of the proposed approach for classification problems, which can obtain more accurate results, even on smaller training sets.
id UNSP_01249d15767425c304851bf9d8a099e7
oai_identifier_str oai:repositorio.unesp.br:11449/161448
network_acronym_str UNSP
network_name_str Repositório Institucional da UNESP
repository_id_str 2946
spelling Improving Optimum-Path Forest Classification Using Confidence MeasuresOptimum-path forestSupervised learningConfidence measuresMachine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this work, we presented an improved version of the Optimum-Path Forest classifier, which learns a score-based confidence level for each training sample in order to turn the classification process smarter, i.e., more reliable. Experimental results over 20 benchmarking datasets have showed the effectiveness and efficiency of the proposed approach for classification problems, which can obtain more accurate results, even on smaller training sets.Univ Fed Sao Carlos, Dept Comp, BR-13565905 Sao Carlos, SP, BrazilHarvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USAUniv Estadual Paulista, Dept Comp, Ave Engn Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilUniv Estadual Paulista, Dept Comp, Ave Engn Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilSpringerUniversidade Federal de São Carlos (UFSCar)Harvard UnivUniversidade Estadual Paulista (Unesp)Fernandes, Silas E. N.Scheirer, WalterCox, David D.Papa, Joao Paulo [UNESP]Pardo, A.Kittler, J.2018-11-26T16:32:47Z2018-11-26T16:32:47Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject619-625application/pdfhttp://dx.doi.org/10.1007/978-3-319-25751-8_74Progress In Pattern Recognition, Image Analysis, Computer Vision, And Applications, Ciarp 2015. Cham: Springer Int Publishing Ag, v. 9423, p. 619-625, 2015.0302-9743http://hdl.handle.net/11449/16144810.1007/978-3-319-25751-8_74WOS:000374793800074WOS000374793800074.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProgress In Pattern Recognition, Image Analysis, Computer Vision, And Applications, Ciarp 20150,295info:eu-repo/semantics/openAccess2024-04-23T16:11:26Zoai:repositorio.unesp.br:11449/161448Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-04-23T16:11:26Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false
dc.title.none.fl_str_mv Improving Optimum-Path Forest Classification Using Confidence Measures
title Improving Optimum-Path Forest Classification Using Confidence Measures
spellingShingle Improving Optimum-Path Forest Classification Using Confidence Measures
Fernandes, Silas E. N.
Optimum-path forest
Supervised learning
Confidence measures
title_short Improving Optimum-Path Forest Classification Using Confidence Measures
title_full Improving Optimum-Path Forest Classification Using Confidence Measures
title_fullStr Improving Optimum-Path Forest Classification Using Confidence Measures
title_full_unstemmed Improving Optimum-Path Forest Classification Using Confidence Measures
title_sort Improving Optimum-Path Forest Classification Using Confidence Measures
author Fernandes, Silas E. N.
author_facet Fernandes, Silas E. N.
Scheirer, Walter
Cox, David D.
Papa, Joao Paulo [UNESP]
Pardo, A.
Kittler, J.
author_role author
author2 Scheirer, Walter
Cox, David D.
Papa, Joao Paulo [UNESP]
Pardo, A.
Kittler, J.
author2_role author
author
author
author
author
dc.contributor.none.fl_str_mv Universidade Federal de São Carlos (UFSCar)
Harvard Univ
Universidade Estadual Paulista (Unesp)
dc.contributor.author.fl_str_mv Fernandes, Silas E. N.
Scheirer, Walter
Cox, David D.
Papa, Joao Paulo [UNESP]
Pardo, A.
Kittler, J.
dc.subject.por.fl_str_mv Optimum-path forest
Supervised learning
Confidence measures
topic Optimum-path forest
Supervised learning
Confidence measures
description Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this work, we presented an improved version of the Optimum-Path Forest classifier, which learns a score-based confidence level for each training sample in order to turn the classification process smarter, i.e., more reliable. Experimental results over 20 benchmarking datasets have showed the effectiveness and efficiency of the proposed approach for classification problems, which can obtain more accurate results, even on smaller training sets.
publishDate 2015
dc.date.none.fl_str_mv 2015-01-01
2018-11-26T16:32:47Z
2018-11-26T16:32:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/conferenceObject
format conferenceObject
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://dx.doi.org/10.1007/978-3-319-25751-8_74
Progress In Pattern Recognition, Image Analysis, Computer Vision, And Applications, Ciarp 2015. Cham: Springer Int Publishing Ag, v. 9423, p. 619-625, 2015.
0302-9743
http://hdl.handle.net/11449/161448
10.1007/978-3-319-25751-8_74
WOS:000374793800074
WOS000374793800074.pdf
url http://dx.doi.org/10.1007/978-3-319-25751-8_74
http://hdl.handle.net/11449/161448
identifier_str_mv Progress In Pattern Recognition, Image Analysis, Computer Vision, And Applications, Ciarp 2015. Cham: Springer Int Publishing Ag, v. 9423, p. 619-625, 2015.
0302-9743
10.1007/978-3-319-25751-8_74
WOS:000374793800074
WOS000374793800074.pdf
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv Progress In Pattern Recognition, Image Analysis, Computer Vision, And Applications, Ciarp 2015
0,295
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv 619-625
application/pdf
dc.publisher.none.fl_str_mv Springer
publisher.none.fl_str_mv Springer
dc.source.none.fl_str_mv Web of Science
reponame:Repositório Institucional da UNESP
instname:Universidade Estadual Paulista (UNESP)
instacron:UNESP
instname_str Universidade Estadual Paulista (UNESP)
instacron_str UNESP
institution UNESP
reponame_str Repositório Institucional da UNESP
collection Repositório Institucional da UNESP
repository.name.fl_str_mv Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)
repository.mail.fl_str_mv repositoriounesp@unesp.br
_version_ 1834483453916086272