Improving Optimum-Path Forest Classification Using Confidence Measures
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo de conferência |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UNESP |
Texto Completo: | http://dx.doi.org/10.1007/978-3-319-25751-8_74 http://hdl.handle.net/11449/161448 |
Resumo: | Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this work, we presented an improved version of the Optimum-Path Forest classifier, which learns a score-based confidence level for each training sample in order to turn the classification process smarter, i.e., more reliable. Experimental results over 20 benchmarking datasets have showed the effectiveness and efficiency of the proposed approach for classification problems, which can obtain more accurate results, even on smaller training sets. |
id |
UNSP_01249d15767425c304851bf9d8a099e7 |
---|---|
oai_identifier_str |
oai:repositorio.unesp.br:11449/161448 |
network_acronym_str |
UNSP |
network_name_str |
Repositório Institucional da UNESP |
repository_id_str |
2946 |
spelling |
Improving Optimum-Path Forest Classification Using Confidence MeasuresOptimum-path forestSupervised learningConfidence measuresMachine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this work, we presented an improved version of the Optimum-Path Forest classifier, which learns a score-based confidence level for each training sample in order to turn the classification process smarter, i.e., more reliable. Experimental results over 20 benchmarking datasets have showed the effectiveness and efficiency of the proposed approach for classification problems, which can obtain more accurate results, even on smaller training sets.Univ Fed Sao Carlos, Dept Comp, BR-13565905 Sao Carlos, SP, BrazilHarvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USAUniv Estadual Paulista, Dept Comp, Ave Engn Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilUniv Estadual Paulista, Dept Comp, Ave Engn Luiz Edmundo Carrijo Coube 14-01, BR-17033360 Bauru, SP, BrazilSpringerUniversidade Federal de São Carlos (UFSCar)Harvard UnivUniversidade Estadual Paulista (Unesp)Fernandes, Silas E. N.Scheirer, WalterCox, David D.Papa, Joao Paulo [UNESP]Pardo, A.Kittler, J.2018-11-26T16:32:47Z2018-11-26T16:32:47Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject619-625application/pdfhttp://dx.doi.org/10.1007/978-3-319-25751-8_74Progress In Pattern Recognition, Image Analysis, Computer Vision, And Applications, Ciarp 2015. Cham: Springer Int Publishing Ag, v. 9423, p. 619-625, 2015.0302-9743http://hdl.handle.net/11449/16144810.1007/978-3-319-25751-8_74WOS:000374793800074WOS000374793800074.pdfWeb of Sciencereponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengProgress In Pattern Recognition, Image Analysis, Computer Vision, And Applications, Ciarp 20150,295info:eu-repo/semantics/openAccess2024-04-23T16:11:26Zoai:repositorio.unesp.br:11449/161448Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462024-04-23T16:11:26Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
dc.title.none.fl_str_mv |
Improving Optimum-Path Forest Classification Using Confidence Measures |
title |
Improving Optimum-Path Forest Classification Using Confidence Measures |
spellingShingle |
Improving Optimum-Path Forest Classification Using Confidence Measures Fernandes, Silas E. N. Optimum-path forest Supervised learning Confidence measures |
title_short |
Improving Optimum-Path Forest Classification Using Confidence Measures |
title_full |
Improving Optimum-Path Forest Classification Using Confidence Measures |
title_fullStr |
Improving Optimum-Path Forest Classification Using Confidence Measures |
title_full_unstemmed |
Improving Optimum-Path Forest Classification Using Confidence Measures |
title_sort |
Improving Optimum-Path Forest Classification Using Confidence Measures |
author |
Fernandes, Silas E. N. |
author_facet |
Fernandes, Silas E. N. Scheirer, Walter Cox, David D. Papa, Joao Paulo [UNESP] Pardo, A. Kittler, J. |
author_role |
author |
author2 |
Scheirer, Walter Cox, David D. Papa, Joao Paulo [UNESP] Pardo, A. Kittler, J. |
author2_role |
author author author author author |
dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Harvard Univ Universidade Estadual Paulista (Unesp) |
dc.contributor.author.fl_str_mv |
Fernandes, Silas E. N. Scheirer, Walter Cox, David D. Papa, Joao Paulo [UNESP] Pardo, A. Kittler, J. |
dc.subject.por.fl_str_mv |
Optimum-path forest Supervised learning Confidence measures |
topic |
Optimum-path forest Supervised learning Confidence measures |
description |
Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this work, we presented an improved version of the Optimum-Path Forest classifier, which learns a score-based confidence level for each training sample in order to turn the classification process smarter, i.e., more reliable. Experimental results over 20 benchmarking datasets have showed the effectiveness and efficiency of the proposed approach for classification problems, which can obtain more accurate results, even on smaller training sets. |
publishDate |
2015 |
dc.date.none.fl_str_mv |
2015-01-01 2018-11-26T16:32:47Z 2018-11-26T16:32:47Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
format |
conferenceObject |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-319-25751-8_74 Progress In Pattern Recognition, Image Analysis, Computer Vision, And Applications, Ciarp 2015. Cham: Springer Int Publishing Ag, v. 9423, p. 619-625, 2015. 0302-9743 http://hdl.handle.net/11449/161448 10.1007/978-3-319-25751-8_74 WOS:000374793800074 WOS000374793800074.pdf |
url |
http://dx.doi.org/10.1007/978-3-319-25751-8_74 http://hdl.handle.net/11449/161448 |
identifier_str_mv |
Progress In Pattern Recognition, Image Analysis, Computer Vision, And Applications, Ciarp 2015. Cham: Springer Int Publishing Ag, v. 9423, p. 619-625, 2015. 0302-9743 10.1007/978-3-319-25751-8_74 WOS:000374793800074 WOS000374793800074.pdf |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
Progress In Pattern Recognition, Image Analysis, Computer Vision, And Applications, Ciarp 2015 0,295 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
619-625 application/pdf |
dc.publisher.none.fl_str_mv |
Springer |
publisher.none.fl_str_mv |
Springer |
dc.source.none.fl_str_mv |
Web of Science reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
instname_str |
Universidade Estadual Paulista (UNESP) |
instacron_str |
UNESP |
institution |
UNESP |
reponame_str |
Repositório Institucional da UNESP |
collection |
Repositório Institucional da UNESP |
repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
_version_ |
1834483453916086272 |