Improving optimum-path forest classification using confidence measures
| Autor(a) principal: | |
|---|---|
| Data de Publicação: | 2015 |
| Outros Autores: | , , |
| Tipo de documento: | Artigo de conferência |
| Idioma: | eng |
| Título da fonte: | Repositório Institucional da UNESP |
| Texto Completo: | http://dx.doi.org/10.1007/978-3-319-16811-1_22 http://hdl.handle.net/11449/168923 |
Resumo: | Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this work, we presented an improved version of the Optimum-Path Forest classifier, which learns a score-based confidence level for each training sample in order to turn the classification process “smarter”, i.e., more reliable. Experimental results over 20 benchmarking datasets have showed the effectiveness and efficiency of the proposed approach for classification problems, which can obtain more accurate results, even on smaller training sets. |
| id |
UNSP_d78fec3c3e9fa60830df95d7ea3c5d34 |
|---|---|
| oai_identifier_str |
oai:repositorio.unesp.br:11449/168923 |
| network_acronym_str |
UNSP |
| network_name_str |
Repositório Institucional da UNESP |
| repository_id_str |
2946 |
| spelling |
Improving optimum-path forest classification using confidence measuresConfidence measuresOptimum-path forestSupervised learningMachine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this work, we presented an improved version of the Optimum-Path Forest classifier, which learns a score-based confidence level for each training sample in order to turn the classification process “smarter”, i.e., more reliable. Experimental results over 20 benchmarking datasets have showed the effectiveness and efficiency of the proposed approach for classification problems, which can obtain more accurate results, even on smaller training sets.Department of Computing Federal University of S�o Carlos UFSCar Rodovia Washington Lu�s, Km 235-SP 310Department of Molecular and Cellular Biology Harvard University, 52 Oxford StDepartment of Computing Univ Estadual Paulista-UNESP, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01Department of Computing Univ Estadual Paulista-UNESP, Av. Eng. Luiz Edmundo Carrijo Coube, 14-01Universidade Federal de São Carlos (UFSCar)Harvard UniversityUniversidade Estadual Paulista (Unesp)Fernandes, Silas E. N.Scheirer, WalterCox, David D.Papa, Jo�o Paulo [UNESP]2018-12-11T16:43:38Z2018-12-11T16:43:38Z2015-01-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObject619-625http://dx.doi.org/10.1007/978-3-319-16811-1_22Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9423, p. 619-625.1611-33490302-9743http://hdl.handle.net/11449/16892310.1007/978-3-319-16811-1_222-s2.0-84983604654Scopusreponame:Repositório Institucional da UNESPinstname:Universidade Estadual Paulista (UNESP)instacron:UNESPengLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)0,295info:eu-repo/semantics/openAccess2021-10-23T21:44:21Zoai:repositorio.unesp.br:11449/168923Repositório InstitucionalPUBhttp://repositorio.unesp.br/oai/requestrepositoriounesp@unesp.bropendoar:29462021-10-23T21:44:21Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP)false |
| dc.title.none.fl_str_mv |
Improving optimum-path forest classification using confidence measures |
| title |
Improving optimum-path forest classification using confidence measures |
| spellingShingle |
Improving optimum-path forest classification using confidence measures Fernandes, Silas E. N. Confidence measures Optimum-path forest Supervised learning |
| title_short |
Improving optimum-path forest classification using confidence measures |
| title_full |
Improving optimum-path forest classification using confidence measures |
| title_fullStr |
Improving optimum-path forest classification using confidence measures |
| title_full_unstemmed |
Improving optimum-path forest classification using confidence measures |
| title_sort |
Improving optimum-path forest classification using confidence measures |
| author |
Fernandes, Silas E. N. |
| author_facet |
Fernandes, Silas E. N. Scheirer, Walter Cox, David D. Papa, Jo�o Paulo [UNESP] |
| author_role |
author |
| author2 |
Scheirer, Walter Cox, David D. Papa, Jo�o Paulo [UNESP] |
| author2_role |
author author author |
| dc.contributor.none.fl_str_mv |
Universidade Federal de São Carlos (UFSCar) Harvard University Universidade Estadual Paulista (Unesp) |
| dc.contributor.author.fl_str_mv |
Fernandes, Silas E. N. Scheirer, Walter Cox, David D. Papa, Jo�o Paulo [UNESP] |
| dc.subject.por.fl_str_mv |
Confidence measures Optimum-path forest Supervised learning |
| topic |
Confidence measures Optimum-path forest Supervised learning |
| description |
Machine learning techniques have been actively pursued in the last years, mainly due to the great number of applications that make use of some sort of intelligent mechanism for decision-making processes. In this work, we presented an improved version of the Optimum-Path Forest classifier, which learns a score-based confidence level for each training sample in order to turn the classification process “smarter”, i.e., more reliable. Experimental results over 20 benchmarking datasets have showed the effectiveness and efficiency of the proposed approach for classification problems, which can obtain more accurate results, even on smaller training sets. |
| publishDate |
2015 |
| dc.date.none.fl_str_mv |
2015-01-01 2018-12-11T16:43:38Z 2018-12-11T16:43:38Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| format |
conferenceObject |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://dx.doi.org/10.1007/978-3-319-16811-1_22 Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9423, p. 619-625. 1611-3349 0302-9743 http://hdl.handle.net/11449/168923 10.1007/978-3-319-16811-1_22 2-s2.0-84983604654 |
| url |
http://dx.doi.org/10.1007/978-3-319-16811-1_22 http://hdl.handle.net/11449/168923 |
| identifier_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9423, p. 619-625. 1611-3349 0302-9743 10.1007/978-3-319-16811-1_22 2-s2.0-84983604654 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 0,295 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
619-625 |
| dc.source.none.fl_str_mv |
Scopus reponame:Repositório Institucional da UNESP instname:Universidade Estadual Paulista (UNESP) instacron:UNESP |
| instname_str |
Universidade Estadual Paulista (UNESP) |
| instacron_str |
UNESP |
| institution |
UNESP |
| reponame_str |
Repositório Institucional da UNESP |
| collection |
Repositório Institucional da UNESP |
| repository.name.fl_str_mv |
Repositório Institucional da UNESP - Universidade Estadual Paulista (UNESP) |
| repository.mail.fl_str_mv |
repositoriounesp@unesp.br |
| _version_ |
1851768168580644864 |