A new non-conformable derivative based on Tsallis’s q- exponential function
Main Author: | |
---|---|
Publication Date: | 2021 |
Other Authors: | |
Format: | Article |
Language: | eng |
Source: | Revista Intermaths |
Download full: | https://periodicos2.uesb.br/intermaths/article/view/10101 |
Summary: | In this paper, a new derivative of local type is proposed and some basic properties are studied. This new derivative satisfies some properties of integer-order calculus, e.g. linearity, product rule, quotient rule and the chain rule. Because Tsallis' generalized exponential function, we can extend some of the classical results, namely: Rolle's theorem, the mean-value theorem. We present the corresponding Q-integral from which new results emerge. Specifically, we generalize the inversion property of the fundamental theorem of calculus and prove a theorem associated with the classical integration by parts. Finally, we present an application involving linear differential equations by means of Q derivative. |
id |
UESB-9_8175c378d1e3b4b1b4a299bf7c42b39e |
---|---|
oai_identifier_str |
oai:ojs.pkp.sfu.ca:article/10101 |
network_acronym_str |
UESB-9 |
network_name_str |
Revista Intermaths |
repository_id_str |
|
spelling |
A new non-conformable derivative based on Tsallis’s q- exponential functionA new non-conformable derivative based on Tsallis’s q- exponential functionCálculo Fracionário Derivada não compatívelFunção q-exponencialFractional calculusNon-conformable derivativeq-exponential functionIn this paper, a new derivative of local type is proposed and some basic properties are studied. This new derivative satisfies some properties of integer-order calculus, e.g. linearity, product rule, quotient rule and the chain rule. Because Tsallis' generalized exponential function, we can extend some of the classical results, namely: Rolle's theorem, the mean-value theorem. We present the corresponding Q-integral from which new results emerge. Specifically, we generalize the inversion property of the fundamental theorem of calculus and prove a theorem associated with the classical integration by parts. Finally, we present an application involving linear differential equations by means of Q derivative.Neste artigo, uma nova derivada do tipo local é proposta e algumas propriedades básicas são estudadas. Esta nova derivada satisfaz algumas propriedades do cálculo de ordem inteira, por exemplo linearidade, regra do produto, regra do quociente e a regra da cadeia. Devido à função exponencial generalizada de Tsallis, podemos estender alguns dos resultados clássicos, a saber: teorema de Rolle, teorema do valor médio. Apresentamos a correspondente Q-integral a partir da qual surgem novos resultados. Especificamente, generalizamos a propriedade de inversão do teorema fundamental do cálculo e provamos um teorema associado à integração clássica por partes. Finalmente, apresentamos uma aplicação envolvendo equações diferenciais lineares por meio da Q-derivada.Universidade Estadual do Sudoeste da Bahia2021-12-28info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtigo avaliado pelos Paresapplication/pdfhttps://periodicos2.uesb.br/intermaths/article/view/1010110.22481/intermaths.v2i2.10101INTERMATHS; v. 2 n. 2 (2021); 106-118INTERMATHS; Vol. 2 Núm. 2 (2021); 106-118INTERMATHS; Vol. 2 No. 2 (2021); 106-1182675-8318reponame:Revista Intermathsinstname:Universidade Estadual do Sudoeste da Bahia (UESB)instacron:UESBenghttps://periodicos2.uesb.br/intermaths/article/view/10101/6470Copyright (c) 2021 INTERMATHSinfo:eu-repo/semantics/openAccessReis, Cristina de Andrade Santos Silva Junior, Rinaldo Vieira da2025-05-13T15:05:13Zoai:ojs.pkp.sfu.ca:article/10101Revistahttps://periodicos2.uesb.br/index.php/intermaths/indexPUBhttps://periodicos2.uesb.br/index.php/intermaths/oaiintermaths@uesb.edu.br || publicacoes.digitais@uesb.edu.br2675-83182675-8318opendoar:2025-05-13T15:05:13Revista Intermaths - Universidade Estadual do Sudoeste da Bahia (UESB)false |
dc.title.none.fl_str_mv |
A new non-conformable derivative based on Tsallis’s q- exponential function A new non-conformable derivative based on Tsallis’s q- exponential function |
title |
A new non-conformable derivative based on Tsallis’s q- exponential function |
spellingShingle |
A new non-conformable derivative based on Tsallis’s q- exponential function Reis, Cristina de Andrade Santos Cálculo Fracionário Derivada não compatível Função q-exponencial Fractional calculus Non-conformable derivative q-exponential function |
title_short |
A new non-conformable derivative based on Tsallis’s q- exponential function |
title_full |
A new non-conformable derivative based on Tsallis’s q- exponential function |
title_fullStr |
A new non-conformable derivative based on Tsallis’s q- exponential function |
title_full_unstemmed |
A new non-conformable derivative based on Tsallis’s q- exponential function |
title_sort |
A new non-conformable derivative based on Tsallis’s q- exponential function |
author |
Reis, Cristina de Andrade Santos |
author_facet |
Reis, Cristina de Andrade Santos Silva Junior, Rinaldo Vieira da |
author_role |
author |
author2 |
Silva Junior, Rinaldo Vieira da |
author2_role |
author |
dc.contributor.author.fl_str_mv |
Reis, Cristina de Andrade Santos Silva Junior, Rinaldo Vieira da |
dc.subject.por.fl_str_mv |
Cálculo Fracionário Derivada não compatível Função q-exponencial Fractional calculus Non-conformable derivative q-exponential function |
topic |
Cálculo Fracionário Derivada não compatível Função q-exponencial Fractional calculus Non-conformable derivative q-exponential function |
description |
In this paper, a new derivative of local type is proposed and some basic properties are studied. This new derivative satisfies some properties of integer-order calculus, e.g. linearity, product rule, quotient rule and the chain rule. Because Tsallis' generalized exponential function, we can extend some of the classical results, namely: Rolle's theorem, the mean-value theorem. We present the corresponding Q-integral from which new results emerge. Specifically, we generalize the inversion property of the fundamental theorem of calculus and prove a theorem associated with the classical integration by parts. Finally, we present an application involving linear differential equations by means of Q derivative. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-12-28 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artigo avaliado pelos Pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos2.uesb.br/intermaths/article/view/10101 10.22481/intermaths.v2i2.10101 |
url |
https://periodicos2.uesb.br/intermaths/article/view/10101 |
identifier_str_mv |
10.22481/intermaths.v2i2.10101 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://periodicos2.uesb.br/intermaths/article/view/10101/6470 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 INTERMATHS info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 INTERMATHS |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Estadual do Sudoeste da Bahia |
publisher.none.fl_str_mv |
Universidade Estadual do Sudoeste da Bahia |
dc.source.none.fl_str_mv |
INTERMATHS; v. 2 n. 2 (2021); 106-118 INTERMATHS; Vol. 2 Núm. 2 (2021); 106-118 INTERMATHS; Vol. 2 No. 2 (2021); 106-118 2675-8318 reponame:Revista Intermaths instname:Universidade Estadual do Sudoeste da Bahia (UESB) instacron:UESB |
instname_str |
Universidade Estadual do Sudoeste da Bahia (UESB) |
instacron_str |
UESB |
institution |
UESB |
reponame_str |
Revista Intermaths |
collection |
Revista Intermaths |
repository.name.fl_str_mv |
Revista Intermaths - Universidade Estadual do Sudoeste da Bahia (UESB) |
repository.mail.fl_str_mv |
intermaths@uesb.edu.br || publicacoes.digitais@uesb.edu.br |
_version_ |
1840460155728166913 |